Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Acta Materialia, (94), p. 162-171, 2015

DOI: 10.1016/j.actamat.2015.04.047

Links

Tools

Export citation

Search in Google Scholar

Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion

Journal article published in 2015 by J. K. Mason ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Monte Carlo and cellular automata simulations of grain boundary motion generally suffer from insufficient units of measure. This complicates the comparison of simulations with experiments, the consistent implementation of more than one driving force, and the development of models with predictive capabilities. This paper derives the proportionality constant relating the voxel interaction strength to a boundary energy, derives a formula for the boundary curvature, and uses the Turnbull expression to find the boundary velocity. Providing units of measure for the boundary energy and the boundary curvature allow Monte Carlo simulations and cellular automata simulations, respectively, to be subject to more than one driving force. Using the Turnbull expression to relate a driving pressure to a boundary velocity allows the remaining quantities in cellular automata simulations to be endowed with units of measure. The approach in this paper does not require any calibration of parametric links, but assumes that the voxel interaction strength is a Gaussian function of the distance. The proposed algorithm is implemented in a cellular automata simulation of curvature-driven grain growth.