Elsevier, Acta Materialia, (94), p. 162-171, 2015
DOI: 10.1016/j.actamat.2015.04.047
Full text: Download
Monte Carlo and cellular automata simulations of grain boundary motion generally suffer from insufficient units of measure. This complicates the comparison of simulations with experiments, the consistent implementation of more than one driving force, and the development of models with predictive capabilities. This paper derives the proportionality constant relating the voxel interaction strength to a boundary energy, derives a formula for the boundary curvature, and uses the Turnbull expression to find the boundary velocity. Providing units of measure for the boundary energy and the boundary curvature allow Monte Carlo simulations and cellular automata simulations, respectively, to be subject to more than one driving force. Using the Turnbull expression to relate a driving pressure to a boundary velocity allows the remaining quantities in cellular automata simulations to be endowed with units of measure. The approach in this paper does not require any calibration of parametric links, but assumes that the voxel interaction strength is a Gaussian function of the distance. The proposed algorithm is implemented in a cellular automata simulation of curvature-driven grain growth.