Published in

Elsevier, Clinical Neurophysiology, 8(124), p. 1605-1614

DOI: 10.1016/j.clinph.2013.02.022

Links

Tools

Export citation

Search in Google Scholar

A new EEG biomarker of neurobehavioural impairment and sleepiness in sleep apnea patients and controls during extended wakefulness

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE: To explore the use of detrended fluctuation analysis (DFA) scaling exponent of the awake electroencephalogram (EEG) as a new alternative biomarker of neurobehavioural impairment and sleepiness in obstructive sleep apnea (OSA). METHODS: Eight patients with moderate-severe OSA and nine non-OSA controls underwent a 40-h extended wakefulness challenge with resting awake EEG, neurobehavioural performance (driving simulator and psychomotor vigilance task) and subjective sleepiness recorded every 2-h. The DFA scaling exponent and power spectra of the EEG were calculated at each time point and their correlation with sleepiness and performance were quantified. RESULTS: DFA scaling exponent and power spectra biomarkers significantly correlated with simultaneously tested performance and self-rated sleepiness across the testing period in OSA patients and controls. Baseline (8am) DFA scaling exponent but not power spectra were markers of impaired simulated driving after 24-h extended wakefulness in OSA (r=0.738, p=0.037). OSA patients had a higher scaling exponent and delta power during wakefulness than controls. CONCLUSIONS: The DFA scaling exponent of the awake EEG performed as well as conventional power spectra as a marker of impaired performance and sleepiness resulting from sleep loss. SIGNIFICANCE: DFA may potentially identify patients at risk of neurobehavioural impairment and assess treatment effectiveness.