Published in

Oxford University Press, The Computer Journal, 1(55), p. 15-20, 2010

DOI: 10.1093/comjnl/bxq086

Links

Tools

Export citation

Search in Google Scholar

GPU Prefilter for Accurate Cubic B-spline Interpolation

Journal article published in 2010 by Daniel Ruijters ORCID, Philippe Thévenaz
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Achieving accurate interpolation is an important requirement for many signal-processing applications. While nearest-neighbor and linear interpolation methods are popular due to their native GPU support, they unfortunately result in severe undesirable artifacts. Better interpolation methods are known but lack a native GPU support. Yet, a particularly attractive one is prefiltered cubic-spline interpolation. The signal it reconstructs from discrete samples has a much higher fidelity to the original data than what is achievable with nearest-neighbor and linear interpolation. At the same time, its computational load is moderate, provided a sequence of two operations is applied: first, prefilter the samples, and then only reconstruct the signal with the help of a B-spline basis. It has already been established in the literature that the reconstruction step can be implemented efficiently on a GPU. This article focuses on an efficient GPU implementation of the prefilter, on how to apply it to multidimensional samples (e.g., RGB color images), and on its performance aspects.