Dissemin is shutting down on January 1st, 2025

Published in

EMBO Press, The EMBO Journal, 24(29), p. 4146-4160, 2010

DOI: 10.1038/emboj.2010.274

Links

Tools

Export citation

Search in Google Scholar

Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

miRNA-mediated gene silencing requires the GW182 proteins, which are characterized by an N-terminal domain that interacts with Argonaute proteins (AGOs), and a C-terminal silencing domain (SD). In Drosophila melanogaster (Dm) GW182 and a human (Hs) orthologue, TNRC6C, the SD was previously shown to interact with the cytoplasmic poly(A)-binding protein (PABPC1). Here, we show that two regions of GW182 proteins interact with PABPC1: the first contains a PABP-interacting motif 2 (PAM2; as shown before for TNRC6C) and the second contains the M2 and C-terminal sequences in the SD. The latter mediates indirect binding to the PABPC1 N-terminal domain. In D. melanogaster cells, the second binding site dominates; however, in HsTNRC6A-C the PAM2 motif is essential for binding to both Hs and DmPABPC1. Accordingly, a single amino acid substitution in the TNRC6A-C PAM2 motif abolishes the interaction with PABPC1. This mutation also impairs TNRC6s silencing activity. Our findings reveal that despite species-specific differences in the relative strength of the PABPC1-binding sites, the interaction between GW182 proteins and PABPC1 is critical for miRNA-mediated silencing in animal cells.