Dissemin is shutting down on January 1st, 2025

Published in

Detection and Remediation Technologies for Mines and Minelike Targets VIII

DOI: 10.1117/12.487311

Links

Tools

Export citation

Search in Google Scholar

GPR Detection of Buried Symmetrically Shaped Mine-like Objects using Selective Independent Component Analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

This paper addresses the detection of mine-like objects in stepped-frequency ground penetrating radar (SF-GPR) data as a function of object size, object content, and burial depth. The detection approach is based on a Selective Independent Component Analysis (SICA). SICA provides an automatic ranking of components, which enables the suppression of clutter, hence extraction of components carrying mine information. The goal of the investigation is to evaluate various time and frequency domain ICA approaches based on SICA. The performance comparison is based on a series of mine-like objects ranging from small-scale anti-personal (AP) mines to large-scale anti-tank (AT) mines. Large-scale SF-GPR measurements on this series of mine-like objects buried in soil were performed. The SF-GPR data was acquired using a wideband monostatic bow-tie antenna operating in the frequency range 750 MHz - 3.0 GHz. The detection and clutter reduction approaches based on SICA are successfully evaluated on this SF-GPR dataset.