Published in

Elsevier, Experimental Hematology, 3(42), p. 204-217.e1, 2014

DOI: 10.1016/j.exphem.2013.11.011

Links

Tools

Export citation

Search in Google Scholar

PU.1 promotes cell cycle exit in the murine myeloid lineage associated with downregulation of E2F1

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Acute myeloid leukemia (AML) is characterized by increased proliferation and reduced differentiation of myeloid lineage cells. AML is frequently associated with mutations or chromosomal rearrangements involving transcription factors. PU.1 (encoded by Sfpi1) is an ETS family transcription factor that is required for myeloid differentiation. Reduced PU.1 levels, caused by either mutation or repression, are associated with human AML and are sufficient to cause AML in mice. The objective of this study was to determine if reduced PU.1 expression induces deregulation of the cell cycle in the myeloid lineage. Our results showed that immature myeloid cells expressing reduced PU.1 levels (Sfpi1(BN/BN) myeloid cells) proliferated indefinitely in cell culture and expanded in vivo. Transplantation of Sfpi1(BN/BN) cells induced AML in recipient mice. Cultured Sfpi1(BN/BN) cells expressed elevated mRNA transcript and protein levels of E2F1, an important regulator of cell cycle entry. Restoration of PU.1 expression in Sfpi1(BN/BN) myeloid cells blocked proliferation, induced differentiation, and reduced E2F1 expression. Taken together, these data show that PU.1 controls cell cycle exit in the myeloid lineage associated with down-regulation of E2F1 expression.