Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Microwave Theory and Techniques, 1(61), p. 146-153, 2013

DOI: 10.1109/tmtt.2012.2227777

Links

Tools

Export citation

Search in Google Scholar

A Chipless RFID Based on Multiresonant High-Impedance Surfaces

Journal article published in 2013 by Filippo Costa ORCID, Simone Genovesi, Agostino Monorchio
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel chipless RF identification based on a multiresonant high-impedance surface is proposed. The structure is based on a finite metallic frequency-selective surface (FSS) comprising 2 × 2 (30 mm × 30 mm) or 3 × 3 (45 mm × 45 mm) unit cells. The FSS unit cell is formed by several concentric square loop resonators. The thin structure performs deep absorptions of the impinging signal at several resonant frequencies related to the loop resonators. If one of the printed loops in the unit cell is removed, the corresponding absorption peak disappears from the reflected signal giving the possibility of encoding a desired bit sequence. The proposed structure exhibits some intrinsic advantages, such as scalability (bit number increase) without any size increase, polarization independence, large read range, and the capability of operating when mounted on metallic objects. A transmission line model is employed to illustrate the operation principle of the structure, whereas measurements on realized prototypes are provided to assess the reliability and effectiveness of the proposed design.