Published in

American Chemical Society, Journal of the American Chemical Society, 19(127), p. 6962-6963, 2005

DOI: 10.1021/ja051110e

Wiley-VCH Verlag, ChemInform, 40(36), 2005

DOI: 10.1002/chin.200540044

Links

Tools

Export citation

Search in Google Scholar

Gold-Catalyzed Assembly of Heterobicyclic Systems

Journal article published in 2005 by Liming Zhang ORCID, Sergey A. Kozmin
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We have described an efficient gold-catalyzed double cyclization of 1,5-enynes to afford a range of heterobicyclic compounds, including oxabicylclo[3.2.1]octenes, azabicyclo[3.2.1]octenes, oxaspiro[5.4]decene, azaspiro[5.4]decene, oxaspiro[5.5]undecene, oxabicyclo[4.3.0]nonene, azabicyclo[4.3.0]nonene, and oxabicyclo[4.4.0]decene. The mechanism of this reaction is proposed to involve a chemoselective gold-based alkyne activation, carbocyclization, intramolecular nucleophilic addition, followed by protodemetalation. The most notable aspect of this process is the efficient and diastereospecific interception of the reactive intermediate of the initial 6-endo-dig (or 5-endo-dig) cyclization with either oxygen- or nitrogen-based nucleophiles.