Published in

Elsevier, Proceedings of the Combustion Institute, 1(32), p. 229-237, 2009

DOI: 10.1016/j.proci.2008.05.005

Links

Tools

Export citation

Search in Google Scholar

A chemical kinetic study of n-butanol oxidation at elevated pressure in a jet stirred reactor

Journal article published in 2009 by P. Dagaut ORCID, S. M. Sarathy, M. J. Thomson
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Biofuels are attractive alternatives to petroleum derived transportation fuels. n-Butanol, or biobutanol, is one alternative biofuel that can replace gasoline and diesel in transportation applications. Similar to ethanol, n-butanol can be produced via the fermentation of sugars, starches, and lignocelluloses obtained from agricultural feedstocks. n-Butanol has several advantages over ethanol, but the detailed combustion characteristics are not well understood. This paper studies the oxidation of n-butanol in a jet stirred reactor at 10 atm and a range of equivalence ratios. The profiles for CO, CO2, H2O, H2, C1–C4 hydrocarbons, and C1–C4 oxygenated compounds are presented herein. High levels of carbon monoxide, carbon dioxide, water, hydrogen, methane, formaldehyde, ethylene, and propene are detected. The experimental data are used to validate a novel detailed chemical kinetic mechanism for n-butanol oxidation. The proposed mechanism well predicts the concentration of major product species at all temperatures and equivalence ratios studied. Insights into the prediction of other species are presented herein. The proposed mechanism indicates that n-butanol consumption is dominated by H-atom abstraction from the α, β, and γ carbon atoms. A sensitivity analysis is also presented to show the effects of reaction kinetics on the concentration of several poorly predicted species.