Published in

American Chemical Society, Nano Letters, 12(11), p. 5574-5580, 2011

DOI: 10.1021/nl203618h

Links

Tools

Export citation

Search in Google Scholar

Blinking Statistics of Silicon Quantum Dots

Journal article published in 2011 by Benjamin Bruhn, Jan Valenta, Fatemeh Sangghaleh, Jan Linnros ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The blinking statistics of numerous single silicon quantum dots fabricated by electron-beam lithography, plasma etching, and oxidation have been analyzed. Purely exponential on- and off-time distributions were found consistent with the absence of statistical aging. This is in contrast to blinking reports in the literature where power-law distributions prevail as well as observations of statistical aging in nanocrystal ensembles. A linear increase of the switching frequency with excitation power density indicates a domination of single-photon absorption processes, possibly through a direct transfer of charges to trap states without the need for a bimolecular Auger mechanism. Photoluminescence saturation with increasing excitation is not observed; however, there is a threshold in excitation (coinciding with a mean occupation of one exciton per nanocrystal) where a change from linear to square-root increase occurs. Finally, the statistics of blinking of single quantum dots in terms of average on-time, blinking frequency and blinking amplitude reveal large variations (several orders) without any significant correlation demonstrating the individual microscopic character of each quantum dot.