Published in

American Chemical Society, Industrial & Engineering Chemistry Research, 9(53), p. 3539-3549, 2014

DOI: 10.1021/ie4033389

Links

Tools

Export citation

Search in Google Scholar

Probing the Role of Poly(3,4-ethylenedioxythiophene)/Poly(styrenesulfonate)-Coated Multiwalled Carbon Nanotubes in the Thermal and Mechanical Properties of Polycarbonate Nanocomposites

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The role played by multiwalled carbon nanotubes (MWCNTs) coated with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) in the thermal and mechanical properties of polycarbonate (PC) nanocomposites was analyzed. We used differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) to demonstrate that the glass transition temperature of polycarbonate nanocomposites decreased whereas the storage modulus of the samples increased by including PEDOT/PSS-coated MWCNTs. These results indicated that PEDOT/PSS acts as an antiplasticizer. We attributed the enhancement of the storage modulus to the strong hydrogen bonding between PSS and the PC matrix and the reduction of the free volume in the PC matrix due to the shrinkage of PEDOT/PSS upon heating. We also investigated changes in the thermal conductivity and thermal degradation behavior of the nanocomposites. The results indicated that PEDOT/PSS did not play a significant role in improving the thermal conductivity and thermal stability of PC nanocomposites. The relative improvements in the conductivity and thermal stability of the samples that contained PEDOT/PSS were attributed to the better dispersion of the MWCNTs in the PC matrix.