Published in

American Chemical Society, Journal of the American Chemical Society, 23(125), p. 6868-6869, 2003

DOI: 10.1021/ja035087d

Links

Tools

Export citation

Search in Google Scholar

Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory

Journal article published in 2003 by Nicolas Ferré, Massimo Olivucci ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We show that the ab initio CASPT2//CASSCF strategy previously used to investigate the ground and excited states of the chromophore of the vision receptor rhodopsin (Rh) in vacuo can be successfully implemented in a QM/MM scheme allowing for CASPT2//CASSCF/AMBER geometry optimization and excited state property evaluation in proteins. Two receptor models (Rh-1 and Rh-2) incorporating different reduced chromophores are investigated. It is shown that Rh-2 features a chromophore equilibrium structure with the correct helicity and a lambdamax that is only 52 nm blue-shifted from the observed value. This result should open the way to a qualitatively correct ab initio QM/MM modeling of the early excited state transient species involved in the vision process.