Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Langmuir, 3(23), p. 1203-1208, 2006

DOI: 10.1021/la0623477

Links

Tools

Export citation

Search in Google Scholar

Probing the Interface in Vapor-Deposited Bimetallic Pd−Au and Pt−Au Films by CO Adsorption from the Liquid Phase

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bimetallic Pd-Au and Pt-Au and monometallic Pd, Pt, and Au films were prepared by physical vapor deposition. The resulting surfaces were characterized by means of XPS, AFM, and CO adsorption from the liquid phase (CH2Cl2) monitored by ATR-IR spectroscopy. CO adsorption combined with ATR-IR proved to be a very sensitive method for probing the degree of interdiffusion occurring at the interfaces whose properties were altered by variation of the Pd and Pt film thickness from 0.2 to 2 nm. Because no CO adsorption was observed on Au, the evaporation of Pt-group metals on Au allowed us to study the effect of dilution on the adsorption properties of the surfaces. At equivalent Pd film thickness, the evaporation of Au reduced the amount of adsorbed CO and caused the formation of 2-fold bridging CO, which was almost absent in monometallic surfaces. Additionally, the average particle size on Pd-Au surfaces was smaller than that on monometallic Pd surfaces. The results indicate that a Pd/Au diffuse interface is formed that affects the Pd particle size even more drastically than the simple decrease in Pd film thickness in monometallic surfaces. Pt-Au surfaces were less sensitive to CO adsorption, indicating that the two metals do not mix to a significant extent. The difference in the interfacial behavior of Pd and Pt in the bimetallic gold films is traced to the largely different Pd-Au and Pt-Au miscibility gaps.