Published in

American Chemical Society, Chemistry of Materials, 15(27), p. 5238-5252, 2015

DOI: 10.1021/acs.chemmater.5b01362

Links

Tools

Export citation

Search in Google Scholar

Probing Reversible Multielectron Transfer and Structure Evolution of Li1.2Cr0.4Mn0.4O2 Cathode Material for Li-Ion Batteries in a Voltage Range of 1.0–4.8 V

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Li1.2Cr0.4Mn0.4O2 (0.4LiCrO2·0.4Li2MnO3) is an interesting intercalation-type cathode material with high theoretical capacity of 387 mAh g–1 based on multiple-electron transfer of Cr3+/Cr6+. In this work, it has been demonstrated that the reversible Cr3+/Cr6+ redox reaction can only be realized in a wide voltage range between 1.0 and 4.8 V. This is mainly due to large polarization during the discharge. The reversible migration of the Cr ions between octahedral and tetrahedral sites leads to large extent of cation mixing between lithium and transition metal layers, which does not affect the lithium storage capacity and stabilize the structure. In addition, a distorted spinel phase (Li3M2O4) is identified in the deeply discharged sample (1.0 V, Li1.5Cr0.4Mn0.4O2). The above results can explain the high reversible capacity and high structural stability achieved on Li1.2Cr0.4Mn0.4O2. These new findings will provide further in depth understanding on multielectron transfer and local structure stabilization mechanisms in intercalation chemistry, which are essential for understanding and developing a high capacity intercalation-type cathode for next generation high energy density Li-ion batteries.