Dissemin is shutting down on January 1st, 2025

Published in

Royal Society of Chemistry, Chemical Science, 2(7), p. 995-1010, 2016

DOI: 10.1039/c5sc03474d

Links

Tools

Export citation

Search in Google Scholar

Base pairing involving artificial bases in vitro and in vivo

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Herein we report the synthesis of N8-glycosylated 8-aza-deoxyguanosine (N8-8-aza-dG) and 8-aza-9-deaza-deoxyguanosine (N8-8-aza-9-deaza-dG) nucleotides and their base pairing properties with 5-methyl-isocytosine (d-isoCMe), 8-amino-deoxyinosine (8-NH2-dI), 1-N-methyl-8-amino-deoxyinosine (1-Me-8-NH2-dI), 7,8-dihydro-8-oxo-deoxyinosine (8-Oxo-dI), 7,8-dihydro-8-oxo-deoxyadenosine (8-Oxo-dA), and 7,8-dihydro-8-oxo-deoxyguanosine (8-Oxo-dG), in comparison with the d-isoCMe:d-isoG artificial genetic system. As demonstrated by Tm measurements, the N8-8-aza-dG:d-isoCMe base pair formed less stable duplexes as the C:G and d-isoCMe:d-isoG pairs. Incorporation of 8-NH2-dI versus the N8-8-aza-dG nucleoside resulted in a greater reduction in Tm stability, compared to d-isoCMe:d-isoG. Insertion of the methyl group at the N1 position of 8-NH2-dI did not affect duplex stability with N8-8-aza-dG, thus suggesting that the base paring takes place through Hoogsteen base pairing. The cellular interpretation of the nucleo