Published in

American Association for Cancer Research, Molecular Cancer Research, 8(12), p. 1128-1139, 2014

DOI: 10.1158/1541-7786.mcr-13-0502

Links

Tools

Export citation

Search in Google Scholar

Base Excision Repair Defects Invoke Hypersensitivity to PARP Inhibition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract PARP-1 is important for the recognition of both endogenous and exogenous DNA damage, and binds to DNA strand breaks including intermediates of base excision repair (BER). Once DNA-bound, PARP-1 becomes catalytically activated synthesizing PAR polymers onto itself and other repair factors (PARylation). As a result, BER repair proteins such as XRCC1 and DNA polymerase β (pol β) are more efficiently and rapidly recruited to sites of DNA damage. In the presence of an inhibitor of PARP activity (PARPi), PARP-1 binds to sites of DNA damage, but PARylation is prevented. BER enzyme recruitment is hindered, but binding of PARP-1 to DNA is stabilized, impeding DNA repair and leading to double-strand DNA breaks (DSB). Deficiencies in pol β−/− and Xrcc1−/− cells resulted in hypersensitivity to the PARP inhibitor 4-AN and reexpression of pol β or XRCC1, in these contexts, reversed the 4-AN hypersensitivity phenotype. BER deficiencies also showed evidence of replication defects that lead to DSB-induced apoptosis upon PARPi treatment. Finally, the clinically relevant PARP inhibitors olaparib and veliparib also exhibited hypersensitivity in both pol β−/− and Xrcc1−/− BER-deficient cells. These results reveal heightened sensitivity to PARPi as a function of BER deficiency. Implications: BER deficiency represents a new therapeutic opportunity to enhance PARPi efficacy. Visual Overview: http://mcr.aacrjournals.org/content/12/8/1128/F1.large.jpg. Mol Cancer Res; 12(8); 1128–39. ©2014 AACR.