Dissemin is shutting down on January 1st, 2025

Published in

Public Library of Science, PLoS ONE, 4(9), p. e94554, 2014

DOI: 10.1371/journal.pone.0094554

Links

Tools

Export citation

Search in Google Scholar

Germline Variation in Cancer-Susceptibility Genes in a Healthy, Ancestrally Diverse Cohort: Implications for Individual Genome Sequencing

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Technological advances coupled with decreasing costs are bringing whole genome and whole exome sequencing closer to routine clinical use. One of the hurdles to clinical implementation is the high number of variants of unknown significance. For cancer-susceptibility genes, the difficulty in interpreting the clinical relevance of the genomic variants is compounded by the fact that most of what is known about these variants comes from the study of highly selected populations, such as cancer patients or individuals with a family history of cancer. The genetic variation in known cancer-susceptibility genes in the general population has not been well characterized to date. To address this gap, we profiled the nonsynonymous genomic variation in 158 genes causally implicated in carcinogenesis using high-quality whole genome sequences from an ancestrally diverse cohort of 681 healthy individuals. We found that all individuals carry multiple variants that may impact cancer susceptibility, with an average of 68 variants per individual. Of the 2,688 allelic variants identified within the cohort, most are very rare, with 75% found in only 1 or 2 individuals in our population. Allele frequencies vary between ancestral groups, and there are 21 variants for which the minor allele in one population is the major allele in another. Detailed analysis of a selected subset of 5 clinically important cancer genes, BRCA1, BRCA2, KRAS, TP53, and PTEN, highlights differences between germline variants and reported somatic mutations. The dataset can serve a resource of genetic variation in cancer-susceptibility genes in 6 ancestry groups, an important foundation for the interpretation of cancer risk from personal genome sequences.