Published in

Elsevier, Atmospheric Environment, 19(45), p. 3338-3341

DOI: 10.1016/j.atmosenv.2011.03.032

Links

Tools

Export citation

Search in Google Scholar

Barriers and opportunities for passive removal of indoor ozone

Journal article published in 2011 by Elliott T. Gall ORCID, Richard L. Corsi, Jeffrey A. Siegel
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone with no additional energy input and minimal byproduct formation. Distributions for air exchange rate in a subset of homes in Houston, Texas, were taken from the literature and combined with background ozone removal rates in typical houses and previous experimentally determined ozone deposition velocities to activated carbon cloth and gypsum wallboard PRMs. The median ratio of indoor to outdoor ozone was predicted to be 0.16 for homes with no PRMs installed and ranged from 0.047 to 0.12 for homes with PRMs. Median values of ozone removal effectiveness in these homes ranged from 22% to 68% for the conditions investigated. Achieving an ozone removal effectiveness above 50% in half of the homes would require installing a large area of PRMs and providing enhanced air speed to transport pollutants to PRM surfaces. Challenges associated with achieving this removal include optimizing indoor transport and aesthetic implications of large surface areas of PRM materials.