Published in

Portland Press, Biochemical Journal, 1(460), p. 91-101, 2014

DOI: 10.1042/bj20131107

Links

Tools

Export citation

Search in Google Scholar

Glutamyl-tRNAGln amidotransferase is essential for mammalian mitochondrial translation in vivo

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Translational accuracy depends on the correct formation of aminoacyl-tRNAs, which, in the majority of cases, are produced by specific aminoacyl-tRNA synthetases that ligate each amino acid to its cognate isoaceptor tRNA. Aminoacylation of tRNAGln, however, is performed by various mechanisms in different systems. Since no mitochondrial glutaminyl-tRNA synthetase has been identified to date in mammalian mitochondria, Gln-tRNAGln has to be formed by an indirect mechanism in the organelle. It has been demonstrated that human mitochondria contain a non-discriminating glutamyl-tRNA synthetase and the heterotrimeric enzyme GatCAB (where Gat is glutamyl-tRNAGln amidotransferase), which are able to catalyse the formation of Gln-tRNAGlnin vitro. In the present paper we demonstrate that mgatA (mouse GatA) interference in mouse cells produces a strong defect in mitochondrial translation without affecting the stability of the newly synthesized proteins. As a result, interfered cells present an impairment of the oxidative phosphorylation system and a significant increase in ROS (reactive oxygen species) levels. MS analysis of mitochondrial proteins revealed no glutamic acid found in the position of glutamines, strongly suggesting that misaminoacylated Glu-tRNAGln is rejected from the translational apparatus to maintain the fidelity of mitochondrial protein synthesis in mammals.