Published in

Elsevier, Peptides, 4(32), p. 781-789

DOI: 10.1016/j.peptides.2010.12.010

Links

Tools

Export citation

Search in Google Scholar

Glucose-dependent insulinotropic peptide receptor expression in the hippocampus and neocortex of mesial temporal lobe epilepsy patients and rats undergoing pilocarpine induced status epilepticus

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The glucose-dependent insulinotropic peptide receptor (GIPR) has been implicated with neuroplasticity and may be related to epilepsy. GIPR expression was analyzed by immunohistochemistry in the hippocampus (HIP) and neocortex (Cx) of rats undergoing pilocarpine induced status epilepticus (Pilo-SE), and in three young male patients with left mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) treated surgically. A combined GIPR immunohistochemistry and Fluoro-Jade staining was carried out to investigate the association between the GIPR expression and neuronal degeneration induced by Pilo-SE. GIPR was expressed in the cytoplasm of neurons from the HIP CA subfields, dentate gyrus (DG) and Cx of animals and human samples. The GIPR expression after the Pilo-SE induction increases significantly in the HIP after 1h and 5 days, but not after 12h or 50 days. In the Cx, the GIPR expression increases after 1h, 12h and 5 days, but not 50 days after the Pilo-SE. The expression of GIPR 12h after Pilo-SE was inversely proportional to the Fluoro-Jade staining intensity. In the human tissue, GIPR expression patterns were similar to those observed in chronic Pilo-SE animals. No Fluoro-Jade stained cells were observed in the human sample. GIPR is expressed in human HIP and Cx. There was a time and region dependent increase of GIPR expression in the HIP and Cx after Pilo-SE that was inversely associated to neuronal degeneration.