Published in

Oxford University Press, FEMS Microbiology Letters, 2(275), p. 229-236, 2007

DOI: 10.1111/j.1574-6968.2007.00892.x

Links

Tools

Export citation

Search in Google Scholar

Phosphatidylcholine synthesis inCrithidia deanei: the influence of the endosymbiont

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, the role of phospholipid biosynthetic pathways was investigated in the establishment of the mutualistic relationship between the trypanosomatid protozoan Crithidia deanei and its symbiotic bacterium. Although the endosymbiont displays two unit membranes, it lacks a typical Gram-negative cell wall. As in other intracellular bacteria, phosphatidylcholine is a major component of the symbiont envelope. Here, it was shown that symbiont-bearing C. deanei incorporates more than two-fold (32)Pi into phospholipids as compared with the aposymbiotic strain. The major phospholipid synthesized by both strains was phosphatidylcholine, followed by phosphatidylethanolamine and phosphatidylinositol. Cellular fractioning indicated that (32)Pi-phosphatidylcholine is the major phospholipid component of the isolated symbionts, as well as of mitochondria. Although the data indicated that isolated symbionts synthesized phospholipids independently of the trypanosomatid host, a key finding was that the isolated bacteria synthesized mostly phosphatidylethanolamine, rather than phosphatidylcholine. These results indicate that phosphatidylcholine production by the symbiont depends on metabolic exchanges with the host protozoan. Insight about the mechanisms underlying lipid biosynthesis in symbiont-bearing C. deanei might help to understand how the prokaryote/trypanosomatid relation has evolved in the establishment of symbiosis.