ECS Meeting Abstracts, 12(MA2011-02), p. 668-668, 2011
American Chemical Society, Chemistry of Materials, 15(23), p. 3495-3508, 2011
DOI: 10.1021/cm200949v
Full text: Download
Phosphate materials are being extensively studied as lithium-ion battery electrodes. In this work, we present a highthroughput ab initio analysis of phosphates as cathode materials. Capacity, voltage, specific energy, energy density, and thermal stability are evaluated computationally on thousands of compounds. The limits in terms of gravimetric and volumetric capacity inherent to the phosphate chemistry are determined. Voltage ranges for all redox couples in phosphates are provided, and the structural factors influencing the voltages are analyzed. We reinvestigate whether phosphate materials are inherently safe and find that, for the same oxidation state, oxygen release happens thermodynamically at lower temperature for phosphates than for oxides. These findings are used to recommend specific chemistries within the phosphate class and to show the intrinsic limits of certain materials of current interest (e.g., LiCoPO4 and LiNiPO4).