Published in

Nature Research, Scientific Reports, 1(4), 2014

DOI: 10.1038/srep04591

Links

Tools

Export citation

Search in Google Scholar

Bipolar loop-like non-volatile strain in the (001)-oriented Pb(Mg1/3Nb2/3) O-3-PbTiO3 single crystals

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Strain has been widely used to manipulate the properties of various kinds of materials, such as ferroelectrics, semiconductors, superconductors, magnetic materials, and "strain engineering" has become a very active field. For strain-based information storage, the non-volatile strain is very useful and highly desired. However, in most cases, the strain induced by converse piezoelectric effect is volatile. In this work, we report a non-volatile strain in the (001)-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals and demonstrate an approach to measure the non-volatile strain. A bipolar loop-like S-E curve is revealed and a mechanism involving 109° ferroelastic domain switching is proposed. The non-volatile high and low strain states should be significant for applications in information storage.