Published in

Springer, Metabolic Brain Disease, 4(24), p. 561-568, 2009

DOI: 10.1007/s11011-009-9159-0

Links

Tools

Export citation

Search in Google Scholar

Membrane saturated fatty acids and disease progression in Multiple Sclerosis patients

Journal article published in 2009 by Hon G. M., M. S. Hassan, S. J. van Rensburg, S. Abel, R. T. Erasmus, T. Matsha ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The risk of developing multiple sclerosis is associated with increased dietary intake of saturated fatty acids. We determined the fatty acid composition within the different phospholipid fractions of red blood and peripheral blood mononuclear cell membranes of 31 patients diagnosed with multiple sclerosis and 30 healthy control subjects using gas chromatography. Individual saturated fatty acids were correlated with the severity of neurological outcome as measured by the Kurtzke Expanded Disability Status Scale. Significant increases were found in multiple sclerosis peripheral blood mononuclear cell membrane sphingomyelin C14:0 and phosphatidylinositol C22:0. In the peripheral blood mononuclear cell membranes, C22:0 and C24:0 showed positive correlations, while C14:0, C16:0 and C20:0 showed inverse correlations with the Functional System Scores. In conclusion, this study is in accordance with previous studies that have shown an increase in shorter long-chain SATS in MS patients. In addition, this study also showed that higher C14:0 and C16:0 reflected better disease outcome as demonstrated by the inverse correlation with the EDSS and FSS. We have also characterized the specific SATS, that is, long-chain SATS that may increase the risk of developing MS.