Published in

Elsevier, BBA - Molecular Basis of Disease, 3(1638), p. 217-226, 2003

DOI: 10.1016/s0925-4439(03)00086-3

Links

Tools

Export citation

Search in Google Scholar

Possible role of acylphosphatase, Bcl-2 and Fas/Fas-L system in the early changes of cardiac remodeling induced by volume overload

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To identify early adaptive processes of cardiac remodeling (CR) in response to volume overload, we investigated the molecular events that may link intracellular Ca(2+) homeostasis alterations and cardiomyocyte apoptosis. In swine heart subjected to aorto-cava shunt for 6, 12, 24, 48 and 96 h sarcoplasmic reticulum (SR) Ca(2+) pump activity was reduced until 48 h (-30%), but a recovery of control values was found at 96 h. The decrease in SR Ca(2+)-ATPase (SERCA2a) expression at 48 h, was more marked (-60%) and not relieved by a subsequent recovery, while phospholamban (PLB) concentration and phosphorylation were unchanged at all the considered times. Conversely, acylphosphatase activity and expression significantly increased from 48 to 96 h (+40%). Bcl-2 expression increased significantly from 6 to 24 h, but at 48 h, returned to control values. At 48 h, microscopic observations showed that overloaded myocardium underwent substantial damage and apoptotic cell death in concomitance with an enhanced Fas/Fas-L expression. At 96 h, apoptosis appeared attenuated, while Fas/Fas-L expression was still higher than control values and cardiomyocyte hypertrophy became to develop. These data suggest that in our experimental model, acylphosphatase could be involved in the recovery of SERCA2a activity, while cardiomyocyte apoptosis might be triggered by a decline in Bcl-2 expression and a concomitant activation of Fas.