Published in

American Society for Microbiology, Antimicrobial Agents and Chemotherapy, 2(59), p. 1127-1137, 2015

DOI: 10.1128/aac.03786-14

Links

Tools

Export citation

Search in Google Scholar

Bacteriophage-Mediated Control of a Two-Species Biofilm Formed by Microorganisms Causing Catheter-Associated Urinary Tract Infections in anIn VitroUrinary Catheter Model

Journal article published in 2015 by Susan M. Lehman ORCID, Rodney M. Donlan
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTMicroorganisms from a patient or their environment may colonize indwelling urinary catheters, forming biofilm communities on catheter surfaces and increasing patient morbidity and mortality. This study investigated the effect of pretreating hydrogel-coated silicone catheters with mixtures ofPseudomonas aeruginosaandProteus mirabilisbacteriophages on the development of single- and two-species biofilms in a multiday continuous-flowin vitromodel using artificial urine. Novel phages were purified from sewage, characterized, and screened for their abilities to reduce biofilm development by clinical isolates of their respective hosts. Our screening data showed that artificial urine medium (AUM) is a valid substitute for human urine for the purpose of evaluating uropathogen biofilm control by these bacteriophages. Defined phage cocktails targetingP. aeruginosaandP. mirabiliswere designed based on the biofilm inhibition screens. Hydrogel-coated catheters were pretreated with one or both cocktails and challenged with approximately 1 × 103CFU/ml of the corresponding pathogen(s). The biofilm growth on the catheter surfaces in AUM was monitored over 72 to 96 h. Phage pretreatment reducedP. aeruginosabiofilm counts by 4 log10CFU/cm2(P≤ 0.01) andP. mirabilisbiofilm counts by >2 log10CFU/cm2(P≤ 0.01) over 48 h. The presence ofP. mirabiliswas always associated with an increase in lumen pH from 7.5 to 9.5 and with eventual blockage of the reactor lines. The results of this study suggest that pretreatment of a hydrogel urinary catheter with a phage cocktail can significantly reduce mixed-species biofilm formation by clinically relevant bacteria.