Published in

American Chemical Society, Journal of Physical Chemistry C, 1(119), p. 234-241, 2014

DOI: 10.1021/jp5075434

Links

Tools

Export citation

Search in Google Scholar

Possibility of NCS Group Anchor for Ru Dye Adsorption to Anatase TiO2(101) Surface: A Density Functional Theory Investigation

Journal article published in 2014 by Yusuke Ootani, Keitaro Sodeyama, Liyuan Han ORCID, Yoshitaka Tateyama
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We examined the possibility of the presence of isothiocyanate (NCS) group anchor for Ru dye adsorption to anatase TiO2(101) surface in typical dye-sensitized solar cells (DSCs), motivated by the recent X-ray photoelectron spectroscopy (XPS) experimental observations of the NCS anchors. A variety of adsorption configurations were examined with model molecules of CH3NCS by density functional theory (DFT) calculations. To compare with the experimental XPS spectra, we also calculated core-electron binding energies using (TiO2)(38) cluster model. We demonstrated that 0.6-0.7 eV of the observed chemical shift in the S 2p XPS spectra can be assigned to the S interactions with the surface Ti atom and O vacancy, while 8.8 eV shift in the S 1s level is connected to the S-Ti vacancy interaction. On the other hand, it is also confirmed that the adsorption energies of COOH group and acetonitrile solvent molecule are usually larger than that for the NCS group. Therefore, the Ru dye adsorption through the NCS anchor is less probable even on the surface in vacuum and further decreases in the solution environment. With these results, we conclude that the NCS group anchoring is possible in the vacuum environment as shown by the XPS studies, while it will be negligible on the working electrode of the solar cell.