Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Environmental Microbiology, 6(8), p. 1048-1055, 2006

DOI: 10.1111/j.1462-2920.2006.00996.x

Links

Tools

Export citation

Search in Google Scholar

Bacterial diversity is determined by Volume in membrane bioreactors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It has been proposed that established models and theories developed in classical ecology could be employed to greatly improve the optimization of wastewater treatment plants (WWTP) by placing the microbiological component onto a model-predictive basis. In particular, this could be achieved by better understanding bacterial community assembly and development. The species-area relationship is one of the oldest biological laws and has been used to describe spatial diversity patterns in contiguous habitats and on islands. In the current study, bacterial communities in seven membrane bioreactors (MBR), of increasing size, located across the UK were sampled. A significant linear relationship between bacterial taxa richness and reactor size was observed and was similar to classical species-area relationships of larger organisms colonizing oceanic islands. Rank-abundance plots revealed a gradient of greater evenness in community structure as MBR volume increased. Application of the Raup and Crick probability-based similarity index indicated a strong role for dispersal in MBR colonization and community structure. Our findings demonstrate that the MBR sampled behaved like islands with respect to bacterial colonization in accordance with the theory of island biogeography. In addition this study provides further evidence that biodiversity at the bacterial level is more similar to that of animals and plants than previously postulated.