Published in

Public Library of Science, PLoS ONE, 12(6), p. e28005, 2011

DOI: 10.1371/journal.pone.0028005

Links

Tools

Export citation

Search in Google Scholar

Positron Emission Tomography Imaging of CD105 Expression with a 64Cu-Labeled Monoclonal Antibody: NOTA Is Superior to DOTA

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Optimizing the in vivo stability of positron emission tomography (PET) tracers is of critical importance to cancer diagnosis. In the case of (64)Cu-labeled monoclonal antibodies (mAb), in vivo behavior and biodistribution is critically dependent on the performance of the bifunctional chelator used to conjugate the mAb to the radiolabel. This study compared the in vivo characteristics of (64)Cu-labeled TRC105 (a chimeric mAb that binds to both human and murine CD105), through two commonly used chelators: 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Flow cytometry analysis confirmed that chelator conjugation of TRC105 did not affect its CD105 binding affinity or specificity. PET imaging and biodistribution studies in 4T1 murine breast tumor-bearing mice revealed that (64)Cu-NOTA-TRC105 exhibited better stability than (64)Cu-DOTA-TRC105 in vivo, which resulted in significantly lower liver uptake without compromising the tumor targeting efficiency. In conclusion, this study confirmed that NOTA is a superior chelator to DOTA for PET imaging with (64)Cu-labeled TRC105.