Published in

Nature Research, Scientific Reports, 1(4), 2014

DOI: 10.1038/srep06615

Links

Tools

Export citation

Search in Google Scholar

Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the strain-induced anisotropy resulting from the anisotropic thermal expansion of the β-phase PVDF. The simulation based on modified Stoner-Wohlfarth model and the ferromagnetic resonance measurements confirms our results. The positive temperature coefficient of magnetic anisotropy is estimated to be 1.1 × 10(2) J m(-3) K(-1). Preparing the composite at low temperature can enlarge the temperature range where it shows the positive temperature coefficient of magnetic anisotropy. The present results may help to design magnetic devices with improved thermal stability and enhanced performance.