American Society of Hematology, Blood, 5(86), p. 1861-1872, 1995
DOI: 10.1182/blood.v86.5.1861.bloodjournal8651861
Full text: Download
Lymphocyte interactions with other leukocytes and other cell types, as well as with components of the extracellular matrix, are one of the key steps in the immune response. Three novel monoclonal antibodies (MoAbs) have been produced and selected for their ability to induce intercellular adhesion in B cells. These three MoAbs immunoprecipitated a polypeptide of 220 kD, displaying specific phosphotyrosine phosphatase activity that has been identified as CD45. These MoAbs recognize epitopes located on the alternative spliced exon-A-encoded region of CD45. These epitopes are of polypeptidic nature, but they can be masked by addition of carbohydrate during CD45 biosynthesis. Interestingly enough, CD45 epitopes recognized by these MoAbs appeared to be selectively expressed on both peripheral blood and tonsillar B lymphocytes as well as on peripheral blood natural killer (NK) cells. CD45-mediated intercellular adhesion was abrogated upon incubation with anti-leukocyte function-associated antigen 1 (anti-LFA-1), intercellular cell adhesion molecule 1 (ICAM-1), and ICAM-3 MoAbs, thus indicating that this phenomenon involved both LFA-1/ICAM-1 and LFA- 1/ICAM-3 cell adhesion pathways. Moreover, CD45-mediated cell aggregation was also inhibited by preincubation with some conventional anti-CD45 MoAbs. Interestingly, the triggering of cell aggregation through CD45 induced membrane surface relocation of CD45 and LFA-1 molecules, with both of them colocalizing at cell-cell contact areas of B-cell aggregates. Studies with inhibitors of both phosphotyrosine phosphatase and tyrosine kinase activities suggest that CD45 phosphotyrosine phosphatase activity could be involved in CD45-mediated cell aggregation. Taken together, these results support the notion that CD45 is a key molecule in the regulation of LFA-1-mediated cell-cell interactions.