Dissemin is shutting down on January 1st, 2025

Published in

Ecological Society of America, Frontiers in Ecology and the Environment, 3(9), p. 174-182

DOI: 10.1890/090179

Links

Tools

Export citation

Search in Google Scholar

Biophysical considerations in forestry for climate protection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Forestry - including afforestation (the planting of trees on land where they have not recently existed), reforestation, avoided deforestation, and forest management - can lead to increased sequestration of atmospheric carbon dioxide and has therefore been proposed as a strategy to mitigate climate change. However, forestry also influences land-surface properties, including albedo (the fraction of incident sunlight reflected back to space), surface roughness, and evapotranspiration, all of which affect the amount and forms of energy transfer to the atmosphere. In some circumstances, these biophysical feedbacks can result in local climate warming, thereby counteracting the effects of carbon sequestration on global mean temperature and reducing or eliminating the net value of climate-change mitigation projects. Here, we review published and emerging research that suggests ways in which forestry projects can counteract the consequences associated with biophysical interactions, and highlight knowledge gaps in managing forests for climate protection. We also outline several ways in which biophysical effects can be incorporated into frameworks that use the maintenance of forests as a climate protection strategy.