Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ecological Modelling, (289), p. 59-65

DOI: 10.1016/j.ecolmodel.2014.06.022

Links

Tools

Export citation

Search in Google Scholar

Population age and initial density in a patchy environment affect the occurrence of abrupt transitions in a birth-and-death model of Taylor's law

Journal article published in 2014 by Jiang Jiang ORCID, Donald L. DeAngelis, Bo Zhang, Joel E. Cohen
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Taylor's power law describes an empirical relationship between the mean and variance of population densities in field data, in which the variance varies as a power, b, of the mean. Most studies report values of b varying between 1 and 2. However, Cohen (2014a) showed recently that smooth changes in environmental conditions in a model can lead to an abrupt, infinite change in b. To understand what factors can influence the occurrence of an abrupt change in b, we used both mathematical analysis and Monte Carlo samples from a model in which populations of the same species settled on patches, and each population followed independently a stochastic linear birth-and-death process. We investigated how the power relationship responds to a smooth change of population growth rate, under different sampling strategies, initial population density, and population age. We showed analytically that, if the initial populations differ only in density, and samples are taken from all patches after the same time period following a major invasion event, Taylor's law holds with exponent b = 1, regardless of the population growth rate. If samples are taken at different times from patches that have the same initial population densities, we calculate an abrupt shift of b, as predicted by Cohen (2014a). The loss of linearity between log variance and log mean is a leading indicator of the abrupt shift. If both initial population densities and population ages vary among patches, estimates of b lie between 1 and 2, as in most empirical studies. But the value of b declines to ∼1 as the system approaches a critical point. Our results can inform empirical studies that might be designed to demonstrate an abrupt shift in Taylor's law.