Published in

American Chemical Society, Journal of Medicinal Chemistry, 15(54), p. 5373-5384, 2011

DOI: 10.1021/jm2006589

Links

Tools

Export citation

Search in Google Scholar

Polysulfated Xanthones: Multipathway Development of a New Generation of Dual Anticoagulant/Antiplatelet Agents

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A multipathway strategy was used to evaluate the in vitro and in vivo antithrombotic effects of a new synthetic family of sulfated small molecules. Polysulfated xanthonosides showed highly effective anticoagulation effects in vitro, both in plasma (clotting times) and in whole human blood (thromboelastography), as well as in vivo (ip administration, mice). Physicochemical properties were assessed for mangiferin heptasulfate (7), which showed high solubility and stability in water and in human plasma and no putative hepatotoxicity in vivo. Mangiferin heptasulfate (7) was found to be a direct inhibitor of FXa, while persulfated 3,6-(O-β-glucopyranosyl)xanthone (13) acted as a dual inhibitor of FXa (directly and by antithrombin III activation). By impedance aggregometry, compounds 7 and 13 exhibited the antiplatelet effect by inhibition of both arachidonic acid and ADP-induced platelet aggregation. Dual anticoagulant/antiplatelet agents, such as sulfated xanthonosides 7 and 13, are expected to lead to a new therapeutic approach for the treatment of both venous and arterial thrombosis.