Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Synthetic Biology, 1(4), p. 17-22, 2014

DOI: 10.1021/sb5001565

Links

Tools

Export citation

Search in Google Scholar

Direct Mutagenesis of Thousands of Genomic Targets Using Microarray-Derived Oligonucleotides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Multiplex Automated Genome Engineering (MAGE) allows simultaneous mutagenesis of multiple target sites in bacterial genomes using short oligonucleotides. However, large-scale mutagenesis requires hundreds to thousands of unique oligos, which are costly to synthesize and impossible to scale-up by traditional phosphoramidite column-based approaches. Here, we describe a novel method to amplify oligos from microarray chips for direct use in MAGE to perturb thousands of genomic sites simultaneously. We demonstrated the feasibility of large-scale mutagenesis by inserting T7 promoters upstream of 2585 operons in E. coli using this method, which we call Microarray-Oligonucleotide (MO)-MAGE. The resulting mutant library was characterized by high-throughput sequencing to show that all attempted insertions were estimated to have occurred at an average frequency of 0.02 % per loci with 0.4 average insertions per cell. MO-MAGE enables cost-effective large-scale targeted genome engineering that should be useful for a variety of applications in synthetic biology and metabolic engineering.