Published in

Sciendo, Arhiv za higijenu rada i toksikologiju, 2(66), p. 109-120, 2015

DOI: 10.1515/aiht-2015-66-2655

Links

Tools

Export citation

Search in Google Scholar

Polymorphisms in DNA repair genes: link with biomarkers of the CBMN cytome assay in hospital workers chronically exposed to low doses of ionising radiation / Polimorfizmi u genima za popravak DNA: poveznica s biomarkerima mikronukleus-testa u medicinskih radnika kronično izloženih niskim dozama ionizirajućeg zračenja

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Individual sensitivity to ionising radiation (IR) is the result of interaction between exposure, DNA damage, and its repair, which is why polymorphisms in DNA repair genes could play an important role. We examined the association between DNA damage, expressed as micronuclei (MNi), nuclear buds (NBs), and nucleoplasmic bridges (NPBs) and single nucleotide polymorphisms in selected DNA repair genes (APE1, hOGG1, XRCC1, XRCC3, XPD, PARP1, MGMT genes; representative of the different DNA repair pathways operating in mammals) in 77 hospital workers chronically exposed to low doses of IR, and 70 matched controls. A significantly higher MNi frequency was found in the exposed group (16.2±10.4 vs. 11.5±9.4; P=0.003) and the effect appeared to be independent from the principal confounding factor. Exposed individuals with hOGG1, XRCC1, PARP1, and MGMT wild-type alleles or APEX1, as well as XPD (rs13181) heterozygous showed a significantly higher MNi frequency than controls with the same genotypes. Genetic polymorphism analysis and cytogenetic dosimetry have proven to be a powerful tool complementary to physical dosimetry in regular health surveillance programmes.