Published in

American Chemical Society, Journal of the American Chemical Society, 19(132), p. 6800-6808, 2010

DOI: 10.1021/ja101296t

Links

Tools

Export citation

Search in Google Scholar

Synthesis of Multivalent Glycoconjugates Containing the Immunoactive LELTE Peptide: Effect of Glycosylation on Cellular Activation and Natural Killing by Human Peripheral Blood Mononuclear Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Pentapeptide diacidic sequence LELTE, derived from the mycobacterial heat shock protein hsp65, has been recently identified as a "danger" signal of the immune system effective via specific binding to the universal leukocyte triggering receptor CD69. This sequence is not active per se, only after its presentation within the multivalent environment of its parent protein, or after artificial dimerization using a standard bifunctional reagents. Here we describe an entirely new way of presenting of this peptide based on its attachment to a cyclopeptide RAFT scaffold (K-K-K-P-G)(2) through the epsilon-amino group of lysine residues, alone or in combination with the carbohydrate epitope alphaGalNAc. The ability of such RAFT scaffolds to precipitate the target CD69 receptor or to activate CD69-positive cells is enhanced in compounds 2 and 4 possessing combined peptide/carbohydrate expression. Compounds 2 and 4 are highly efficient activators of natural killer lymphocytes, but they are completely inactive from the point of view of activation-induced apoptosis of lymphocytes by the target cells. These unique properties make the combined peptide/carbohydrate RAFTs highly suitable for future evaluation in animal tumor therapies in vivo and predict them to be readily available and efficient immunoactivators.