Published in

American Chemical Society, Chemistry of Materials, 8(22), p. 2573-2581, 2010

DOI: 10.1021/cm903616d

Links

Tools

Export citation

Search in Google Scholar

Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The multicomponent olivine cathode material. LiMn(1/3)Fe(1/3)Co(1/3)PO(4), was prepared via a novel coprecipitation method of the mixed transition metal oxalate, Mn(1/3)Fe(1/3)Co(1/3)(C(2)O(4))center dot 2H(2)O. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement Three distinctive contributions from Mn. Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was 140 5 mAh g(-1) with good cycle retention The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and 81 mAh g(-1), respectively.