Published in

American Chemical Society, Journal of the American Chemical Society, 27(133), p. 10490-10498, 2011

DOI: 10.1021/ja201052q

Links

Tools

Export citation

Search in Google Scholar

Polymer Brushes on Graphene

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A critical bottleneck for the widespread use of single layer graphene is the absence of a facile method of chemical modification which does not diminish the outstanding properties of the two-dimensional sp(2) network. Here, we report on the direct chemical modification of graphene by photopolymerization with styrene. We demonstrate that photopolymerization occurs at existing defect sites and that there is no detectable disruption of the basal plane conjugation of graphene. This method thus offers a route to define graphene functionality without degrading its electronic properties. Furthermore, we show that photopolymerization with styrene results in self-organized intercalative growth and delamination of few layer graphene. Under these reaction conditions, we find that a range of other vinyl monomers exhibits no reactivity with graphene. However, we demonstrate an alternative route by which the surface reactivity can be precisely tuned, and these monomers can be locally grafted via electron-beam-induced carbon deposition on the graphene surface.