Published in

Future Medicine, Epigenomics, 1(4), p. 101-112, 2012

DOI: 10.2217/epi.11.110

Links

Tools

Export citation

Search in Google Scholar

Polychlorinated biphenyls affect histone modification pattern in early development of rats: A role for androgen receptor-dependent modulation?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Background: The epigenome represents an important target of environmental pollution. Early-life exposure to polychlorinated biphenyls (PCBs) modifies sex steroid enzymes and receptor transcription patterns. Steroid receptors, such as androgen receptor (AR), function as coregulators of histone modification enzymes. Aim: To clarify if a PCB early-life exposure might affect the epigenome in rat liver, we analyzed some histone post-translational modifications (H3K4me3 and H4K16Ac) and the corresponding histone remodeling enzymes, and the AR as a histone enzyme coregulator. Results: We observed a decrease of H4K16Ac and H3K4me3 levels, possibly linked to the induction of chromatin-modifying enzymes SirtT1 and Jarid1b, and a decrease of AR. PCBs also seem to induce AR transcriptional activity. Some of the observed effects are sex dimorphic. Conclusion: Our data suggest that an early-life exposure to PCB sometimes modifies the epigenome in the offspring liver in a dimorphic way. AR might be involved in modulating PCB effects on the epigenome.