Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Medicinal Chemistry, 15(51), p. 4620-4631, 2008

DOI: 10.1021/jm800271c

Links

Tools

Export citation

Search in Google Scholar

Asymmetric Synthesis of 2,3-Dihydro-2-arylquinazolin-4-ones: Methodology and Application to a Potent Fluorescent Tubulin Inhibitor with Anticancer Activity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

For several decades the 2,3-dihydroquinazolinone (DHQZ) heterocycle has been known to possess a variety of important biological and medicinal properties. Despite the many interesting facets of these molecules, synthetic access to nonracemic DHQZ analogues has remained elusive. Herein, we disclose a synthetic route that allows access to either enantiomer of a variety of DHQZ derivatives. We illustrate the utility of this chemistry with the asymmetric preparation and biological evaluation of a new chiral fluorescent tubulin binding agent with extremely potent antiproliferative properties against human cancer cells. A computational rationale for the increased potency of the (S)-enantiomer over the (R)-enantiomer is given, based on the crystal structure of alpha,beta-tubulin complexed with colchicine. Taking advantage of the inherent fluorescence of these molecules, confocal images of GMC-5-193 (compound 7) in the cytoplasm of human melanoma cells (MDA-MB-435) cells are presented.