Published in

Elsevier, Neurochemistry International, (78), p. 18-27, 2014

DOI: 10.1016/j.neuint.2014.07.008

Links

Tools

Export citation

Search in Google Scholar

Astrocytic control of neural circuit formation: Highlights on TGF-beta signaling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Brain function depends critically on the coordinated activity of presynaptic and postsynaptic signals derived from both neurons and non-neuronal elements such as glial cells. A key role for astrocytes in neuronal differentiation and circuitry formation has emerged within the last decade. Although the function of glial cells in synapse formation, elimination and efficacy has greatly increased, we are still very far from deeply understanding the molecular and cellular mechanism underlying these events. The present review discusses the mechanisms driving astrocytic control of excitatory and inhibitory synapse formation in the central nervous system, especially the mechanisms mediated by soluble molecules, particularly those from the TGF-β family. Further, we discuss whether and how human astrocytes might contribute to the acquisition of human cognition. We argue that understanding how astrocytic signals regulate synaptic development might offer new insights into human perception, learning, memory, and cognition and, ultimately, provide new targets for the treatment of neurological diseases.