Published in

Oxford University Press (OUP), Cardiovascular Research, 1(52), p. 153-160

DOI: 10.1016/s0008-6363(01)00359-5

Links

Tools

Export citation

Search in Google Scholar

The effect of carvedilol on enhanced ADP-ribosylation and red blood cell membrane damage caused by free radicals

Journal article published in 2001 by E. Szabados, G. Késmárky, R. Halmosi, T. Past, B. Sumegi, K. Tóth, T. Habon ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective: Previous studies have reported that the beta and alpha adrenoceptor blocker carvedilol has unique protective effects on free radical-induced myocardial injury. The aim of this study was to examine how carvedilol regulates reactive-oxygen-species-mediated signaling and decreases red blood cell membrane damage in heart perfusion and in a rheological model. Methods: The ischemia–reperfusion-induced oxidative cell damage, and changes in the intracellular signaling mediated by reactive oxygen species and peroxynitrite were studied on rat hearts in a Langendorff perfusion system (n=15). The effect of carvedilol on red blood cell suspension viscosity (hematocrit: 60%) incubated with free radical generator (phenazine methosulphate) was also investigated (n=10). The measurements were performed on a capillary viscosimeter. Results: In both studies a protective effect of carvedilol was found, as the decrease of red blood cell suspension viscosity and K+ concentration in the supernatant indicated. Carvedilol significantly decreased the ischemia–reperfusion-induced free radical production and the NAD+ catabolism and reversed the poly- and mono(ADP-ribosyl)ation. Carvedilol also decreased the lipid peroxidation and membrane damages as determined by free malondialdehyde production and the release of intracellular enzymes. The self ADP-ribosylation of isolated poly(ADP-ribose) polymerase was also significantly inhibited by carvedilol. Conclusion: Our results show that carvedilol can modulate the reactive-oxygen-species-induced signaling through poly- and mono(ADP-ribosyl)ation reactions, the NAD+ catabolism in postischemic perfused hearts and has a marked scavenger effect on free radical generator-induced red blood cell membrane damage. All these findings may play an important role in the beneficial effects of carvedilol treatment in different cardiovascular diseases.