Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Experimental Brain Research, 3(212), p. 417-427

DOI: 10.1007/s00221-011-2747-3

Links

Tools

Export citation

Search in Google Scholar

Pointing with the wrist: A postural model for Donders' law

Journal article published in 2011 by Domenico Campolo, Ferdinan Widjaja, Mohammad Esmaeili, Etienne Burdet ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The central nervous system uses stereotypical combinations of the three wrist/forearm joint angles to point in a given (2D) direction in space. In this paper, we first confirm and analyze this Donders' law for the wrist as well as the distributions of the joint angles. We find that the quadratic surfaces fitting the experimental wrist configurations during pointing tasks are characterized by a subject-specific Koenderink shape index and by a bias due to the prono-supination angle distribution. We then introduce a simple postural model using only four parameters to explain these characteristics in a pointing task. The model specifies the redundancy of the pointing task by determining the one-dimensional task-equivalent manifold (TEM), parameterized via wrist torsion. For every pointing direction, the torsion is obtained by the concurrent minimization of an extrinsic cost, which guarantees minimal angle rotations (similar to Listing's law for eye movements) and of an intrinsic cost, which penalizes wrist configurations away from comfortable postures. This allows simulating the sequence of wrist orientations to point at eight peripheral targets, from a central one, passing through intermediate points. The simulation first shows that in contrast to eye movements, which can be predicted by only considering the extrinsic cost (i.e., Listing's law), both costs are necessary to account for the wrist/forearm experimental data. Second, fitting the synthetic Donders' law from the simulated task with a quadratic surface yields similar fitting errors compared to experimental data.