Published in

Oxford University Press, Biological Journal of the Linnean Society, 3(105), p. 584-590, 2012

DOI: 10.1111/j.1095-8312.2011.01837.x

Links

Tools

Export citation

Search in Google Scholar

Genome size rather than content might affect call properties in toads of three ploidy levels (Anura: Bufonidae: Bufo viridis subgroup)

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In vertebrates, genome size has been shown to correlate with nuclear and cell sizes, and influences phenotypic features, such as brain complexity. In three different anuran families, advertisement calls of polyploids exhibit longer notes and intervals than diploids, and difference in cellular dimensions have been hypothesized to cause these modifications. We investigated this phenomenon in green toads (Bufo viridis subgroup) of three ploidy levels, in a different call type (release calls) that may evolve independently from advertisement calls, examining 1205 calls, from ten species, subspecies, and hybrid forms. Significant differences between pulse rates of six diploid and four polyploid (3n, 4n) green toad forms across a range of temperatures from 7 to 27 °C were found. Laboratory data supported differences in pulse rates of triploids vs. tetraploids, but failed to reach significance when including field recordings. This study supports the idea that genome size, irrespective of call type, phylogenetic context, and geographical background, might affect call properties in anurans and suggests a common principle governing this relationship. The nuclear-cell size ratio, affected by genome size, seems the most plausible explanation. However, we cannot rule out hypotheses under which call-influencing genes from an unexamined diploid ancestral species might also affect call properties in the hybrid-origin polyploids.