Wiley, Angewandte Chemie International Edition, 27(53), p. 7023-7027, 2014
Wiley, Angewandte Chemie, 27(126), p. 7143-7147, 2014
Full text: Download
Podlike nitrogen-doped carbon nanotubes encapsulating FeNi alloy nanoparticles (Pod(N)-FeNi) were prepared by the direct pyrolysis of organometallic precursors. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements revealed their excellent electrocatalytic activities in the I−/I3− redox reaction of dye-sensitized solar cells (DSSCs). This is suggested to arise from the modification of the surface electronic properties of the carbon by the encapsulated metal alloy nanoparticles (NPs). Sequential scanning with EIS and CV further showed the high electrochemical stability of the Pod(N)-FeNi composite. DSSCs with Pod(N)-FeNi as the counter electrode (CE) presented a power conversion efficiency of 8.82 %, which is superior to that of the control device with sputtered Pt as the CE. The Pod(N)-FeNi composite thus shows promise as an environmentally friendly, low-cost, and highly efficient CE material for DSSCs.