Published in

Canadian Science Publishing, Genome, 5(54), p. 391-401, 2011

DOI: 10.1139/g11-009

Links

Tools

Export citation

Search in Google Scholar

Genetic map of triticale compiling DArT, SSR, and AFLP markers

Journal article published in 2011 by M. Tyrka ORCID, P. T. Bednarek, A. Kilian, M. Wędzony, T. Hura, E. Bauer
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A set of 90 doubled haploid (DH) lines derived from F1plants that originated from a cross between × Triticosecale Wittm. ‘Saka3006’ and ×Triticosecale Wittm. ‘Modus’, via wide crossing with maize, were used to create a genetic linkage map of triticale. The map has 21 linkage groups assigned to the A, B, and R genomes including 155 simple sequence repeat (SSR), 1385 diversity array technology (DArT), and 28 amplified fragment length polymorphism (AFLP) markers covering 2397 cM with a mean distance between two markers of 4.1 cM. Comparative analysis with wheat consensus maps revealed that triticale chromosomes of the A and B genomes were represented by 15 chromosomes, including combinations of 2AS.2AL#, 2AL#2BL, 6AS.6AL#, and 2BS.6AL# instead of 2A, 2B, and 6A. In respect to published maps of rye, substantial rearrangements were found also for chromosomes 1R, 2R, and 3R of the rye genome. Chromosomes 1R and 2R were truncated and the latter was linked with 3R. A nonhomogeneous distribution of markers across the triticale genome was observed with evident bias (48%) towards the rye genome. This genetic map may serve as a reference linkage map of triticale for efficient studies of structural rearrangements, gene mapping, and marker-assisted selection.