Dissemin is shutting down on January 1st, 2025

Published in

CSIRO Publishing, Functional Plant Biology, 10(42), p. 921, 2015

DOI: 10.1071/fp15025

Links

Tools

Export citation

Search in Google Scholar

Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: Challenges and future directions

Journal article published in 2015 by Trevor Garnett, Darren Plett, Sigrid Heuer, Mamoru Okamoto ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Over 100 million tonnes of nitrogen (N) fertiliser are applied globally each year to maintain high yields in agricultural crops. The rising price of N fertilisers has made them a major cost for farmers. Inefficient use of N fertiliser leads to substantial environmental problems through contamination of air and water resources and can be a significant economic cost. Consequently, there is considerable need to improve the way N fertiliser is used in farming systems. The efficiency with which crops use applied N fertiliser – the nitrogen-use efficiency (NUE) – is currently quite low for cereals. This is the case in both high yielding environments and lower yielding environments characteristic of cereal growing regions of Australia. Multiple studies have attempted to identify the genetic basis of NUE, but the utility of the results is limited because of the complex nature of the trait and the magnitude of genotype by environment interaction. Transgenic approaches have been applied to improve plant NUE but with limited success, due, in part, to a combination of the complexity of the trait but also due to lack of accurate phenotyping methods. This review documents these two approaches and suggests future directions in improving cereal NUE with a focus on the Australian cereal industry.