Published in

Springer, Acta Neuropathologica, 3(122), p. 259-270, 2011

DOI: 10.1007/s00401-011-0850-y

Links

Tools

Export citation

Search in Google Scholar

Cell stress induces TDP-43 pathological changes associated with ERK1/2 dysfunction: implications in ALS

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

TDP-43 has been implicated in the pathogenesis of amyotrophic lateral sclerosis and other neurodegenerative diseases. Here we demonstrate, using neuronal and spinal cord organotypic culture models, that chronic excitotoxicity, oxidative stress, proteasome dysfunction and endoplasmic reticulum stress mechanistically induce mislocalization, phosphorylation and aggregation of TDP-43. This is compatible with a lack of function of this protein in the nucleus, specially in motor neurons. The relationship between cell stress and pathological changes of TDP-43 also includes a dysfunction in the survival pathway mediated by mitogen-activated protein kinase/extracellular signal-regulated kinases (ERK1/2). Thus, under stress conditions, neurons and other spinal cord cells showed cytosolic aggregates containing ERK1/2. Moreover, aggregates of abnormal phosphorylated ERK1/2 were also found in the spinal cord in amyotrophic lateral sclerosis (ALS), specifically in motor neurons with abnormal immunoreactive aggregates of phosphorylated TDP-43. These results demonstrate that cellular stressors are key factors in neurodegeneration associated with TDP-43 and disclose the identity of ERK1/2 as novel players in the pathogenesis of ALS.