Dissemin is shutting down on January 1st, 2025

Published in

American Association of Immunologists, The Journal of Immunology, 12(194), p. 5961-5967, 2015

DOI: 10.4049/jimmunol.1401890

Links

Tools

Export citation

Search in Google Scholar

Platelet-Activating Factor Receptor Contributes to Antileishmanial Function of Miltefosine

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Miltefosine [hexadecylphosphocholine (HPC)] is the only orally bioavailable drug for the disease visceral leishmaniasis, which is caused by the protozoan parasite Leishmania donovani. Although miltefosine has direct leishmanicidal effects, evidence is mounting for its immune system–dependent effects. The mechanism of such indirect antileishmanial effects of miltefosine remains to be discovered. As platelet-activating factor and HPC share structural semblances and both induce killing of intracellular Leishmania, we surmised that platelet-activating factor (PAF) receptor had a significant role in the antileishmanial function of miltefosine. The proposition was supported by molecular dynamic simulation of HPC docking into PAF receptor and by comparison of its leishmanicidal function on PAF receptor–deficient macrophages and mice under HPC treatment. We observed that compared with wild-type macrophages, the PAF receptor–deficient macrophages showed 1) reduced binding of a fluorescent analog of HPC, 2) decreased TNF-α production, and 3) lower miltefosine-induced killing of L. donovani. Miltefosine exhibited significantly compromised leishmanicidal function in PAF receptor–deficient mice. An anti-PAF receptor Ab led to a significant decrease in miltefosine-induced intracellular Leishmania killing and IFN-γ production in a macrophage–T cell coculture system. These results indicate significant roles for PAF receptor in the leishmanicidal activity of HPC. The findings open new avenues for a more rational understanding of the mechanism of action of this drug as well as for improved therapeutic strategies.